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incluse dans O. On prend K = B(zo, ).
Posons Fy ,(r) = f(x, 20 + re?). On a, pour p-presque tout x, 'égalité (vec-
torielle)
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Ainsi pour tout z tel que |z — zg| <7, on a

f(z,2) = f(z,20)
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On conclut alors comme précédemment avec le théoreme de convergence do-
minée et une suite (z,) quelconque de limite zy (& partir d’un certain rang,
elle prend ses valeurs dans K). On peut remarquer que la fin de la preuve
est presque identique a la preuve du théoreme de dérivation sous le signe in-
tégrale, a la différence pres qu'on a redémontré “a la main” l'inégalité des
accroissements dans le cadre du R-espace vectoriel C. ]

Exercice 1. Posons ¢(z) = [, £ dA(z) et montrons que ¢ est holomorphe

sur C\R... Soit K un compact de C\Ry : la fonction z — d(z, R, ) est continue
sur K, donc y atteint son minimum, noté €. Comme K ne rencontre pas R,
on a e > 0. On peut donc appliquer le théoreme avec gi(z) = % 1l s’agit

en fait de la transformée de Stieljes de la fonction e™*.

4.8 Mesures a densité

4.8.1 Définition et premieres propriétés

Soit (€2, F, ) un espace mesuré. Soit f une fonction positive mesurable
de (2, F) dans (R, B(R)). On peut définir une application v de (2, F) dans
[0, +00] par

v(A) = /Af dpu.

Il n’est pas difficile de démontrer que v est une mesure sur ({2, F) (exercice
laissé au lecteur).

Définition. On dit que v est une mesure qui admet une densité par rapport
a u et que cette densité est f.

En réalité, il y a ici un abus de langage : en effet, une méme mesure ne
peut-elle admettre plusieurs densités par rapport a pu?
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Proposition 4.8.1. Soient f et g deux fonctions
mesurables étant toutes deux des densités de v par rapport a . Alors f =g
p-presque partout.

Démonstration. Posons Ay = {w : f(w) > g(w)}.
OnaO=v(A,)—v(A)= [y, fdu—Js, gdu= [y (f—g)dp.
De méme si 'on pose A = {w : f(w) < g(w)}, on a encore la relation

0=v(A )—v(A )= [, fdp— [, gdu= [, (f—g) du. Cependant
lf =gl =(f—9)1a, —(f —g)la_, donc

[1r=gldu = [t =) 1a, du— [(F~g) 14 dn
- /A+<f—g)du—/A_<f—g>du=0—0=o.

O]

Théoréme 4.8.2. On suppose que v est une mesure admettant f comme
densité par rapport a p. Alors, pour toute fonction mesurable g

[ sl dv = [ 1glf d (43)

Si cette quantité est finie, on a alors

/g dv = /gf dpu. (4.4)

Démonstration. Si g =14 avec A € F, (B4) est immédiat. Par linéarité, (24)
est également vérifiée lorsque g est une fonction simple positive. En utilisant
le lemme =33 et le théoréme de convergence monotone, il s’ensuit que (22)
est vraie pour toute fonction mesurable positive, donc en particulier (E=3) est
vraie pour toute fonction mesurable g. Supposons maintenant que [ |g| dv =
[ lg|f du < 400 : on peut alors écrire g = g7 — g~ avec [ gt dv < 400 et
J g~ dv < +oco. Comme g" et g~ sont des fonctions mesurables positives, on
a [gtdv= [gfduet [g0 dv = [g f du. En faisant la différence, on
obtient donc [(¢" —g¢7) dv = [(¢7 — g7 )f dpu, soit (E2). O

4.8.2 Décomposition de Lebesgue

Définition. On dit que la mesure i est une mesure absolument continue par
rapport a A, ce qui est noté p < A, si pour tout borélien A € B(R), on a :



74 CHAPITRE 4. INTEGRALES

A(A) = 0 implique p(A) = 0. On dit que la mesure v est une mesure singuliére
par rapport & A, ce que 'on note v L A, §’il existe N € B(R) tel que A(N) =0
et v(N¢) =0.

Remarque. Un tel borélien N n’est pas nécessairement unique.

Théoréme 4.8.3. Toute mesure o—finie p sur (R,B(R)) se décompose de
facon unique sous la forme u = vi + vo, ot vy est absolument continue par
rapport d la mesure de Lebesque X\ et vy est singuliére par rapport d A.

Démonstration. Montrons tout d’abord 'existence d’une telle décomposition.
Considérons I’ensemble des négligeables pour la mesure A :

N = {A € B(R); A(A) = 0}.

Posons a = sup{u(4); A € N}. Si @ = 0, alors 4 = v1 et il n’y a rien a
démontrer. Supposons donc a > 0. Dans ce cas, il existe une suite croissante
(A,) d’éléments de N telle que p(An) > a — L pour tout n € N*. Ainsi,
I'ensemble A = U,>14,, € N vérifie u(A) = a. Soit maintenant B C A€ tel
que A(B) = 0. On se demande s’il est possible d’avoir p(B) > 0. On sait que
u(AUB) = pu(A)+pu(B) > aet AUB € N donc u(AU B) < a. On voit donc
que nécessairement p(B) = 0. Posons maintenant vy = lep et vo = lyp. La
mesure v; admet la densité 14c par rapport a p. On a

I/l(B) :/;]IAC duz/]lAc]lB dM:/]IACF‘IB d,u:,u(AcﬁB)

Ainsi, si B est tel que A(B) = 0, alors v1(B) = u(A°NB) = 0 et donc v < A.
On remarque de plus que A(A°) = 0 et v2(A°) = (AN A°) = 0. Donc vy est
bien singuliere par rapport a .

Pour montrer 1'unicité de la décomposition, supposons que p = v + v4,
avec V/; < X et 4 L \. Choisissons donc des ensembles A, B € B(R) tels que
a(A) = N(A°) =1V/'9(B) = A(B¢) = 0. On a alors

v2(AN B) = vy(AN B) = 11(A°U B) = v (A°U B°) = 0.

/ / / /
Donc vy =lynpvi =lanp p=lunp vy =viet vo=pu—vy = p—1v) = ;.
O

Remarque. En réalité, on peut dire un peu plus : la mesure v apparaissant
dans la décomposition du théoréeme admet une densité par rapport a la mesure
de Lebesgue. Ce résultat constitue le théoréme de Radon-Nikodym. Ce résul-
tat, que nous ne démontrerons pas ici, peut étre établi & ’aide de techniques
hilbertiennes (voir par exemple Rudin [28]).



