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incluse dans O. On prend K = B(z0, r).
Posons Fθ,x(r) = f(x, z0 + reiθ). On a, pour µ-presque tout x, l’égalité (vec-
torielle)

Fθ,x(r) − Fθ,x(0) =
∫ r

0
F ′

θ,x(u) du,

soit
f(x, z0 + reiθ) − f(x, z0)

reiθ
= 1
r

∫ r

0

∂

∂z
f(x, z0 + ueiθ) du.

Ainsi pour tout z tel que |z − z0| ≤ r, on a∣∣∣∣f(x, z) − f(x, z0)
z − z0

∣∣∣∣ ≤ sup
z∈B(z0,r)

∣∣∣∣ ∂∂z f(x, z)
∣∣∣∣ ≤ g1,B(z0,r)(x) µ− p.p.

On conclut alors comme précédemment avec le théorème de convergence do-
minée et une suite (zn) quelconque de limite z0 (à partir d’un certain rang,
elle prend ses valeurs dans K). On peut remarquer que la fin de la preuve
est presque identique à la preuve du théorème de dérivation sous le signe in-
tégrale, à la différence près qu’on a redémontré “à la main” l’inégalité des
accroissements dans le cadre du R-espace vectoriel C.

Exercice 1. Posons ϕ(z) =
∫
R+

e−x

x−z dλ(x) et montrons que ϕ est holomorphe
sur C\R+. Soit K un compact de C\R+ : la fonction z 7→ d(z,R+) est continue
sur K, donc y atteint son minimum, noté εK . Comme K ne rencontre pas R+,
on a εK > 0. On peut donc appliquer le théorème avec gK(x) = e−x

εK
. Il s’agit

en fait de la transformée de Stieljès de la fonction e−x.

4.8 Mesures à densité

4.8.1 Définition et premières propriétés

Soit (Ω,F , µ) un espace mesuré. Soit f une fonction positive mesurable
de (Ω,F) dans (R,B(R)). On peut définir une application ν de (Ω,F) dans
[0,+∞] par

ν(A) =
∫

A
f dµ.

Il n’est pas difficile de démontrer que ν est une mesure sur (Ω,F) (exercice
laissé au lecteur).

Définition. On dit que ν est une mesure qui admet une densité par rapport
à µ et que cette densité est f .

En réalité, il y a ici un abus de langage : en effet, une même mesure ne
peut-elle admettre plusieurs densités par rapport à µ ?
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Proposition 4.8.1. Soit ν une mesure σ-finie. Soient f et g deux fonctions
mesurables étant toutes deux des densités de ν par rapport à µ. Alors f = g
µ-presque partout.

Démonstration. Supposons d’abord µ finie. Posons A+ = {ω : f(ω) > g(ω)}.
On a 0 = ν(A+) − ν(A+) =

∫
A+

f dµ−
∫

A+
g dµ =

∫
A+

(f − g) dµ.
De même si l’on pose A− = {ω : f(ω) < g(ω)}, on a encore la relation
0 = ν(A−) − ν(A−) =

∫
A−

f dµ −
∫

A−
g dµ =

∫
A−

(f − g) dµ. Cependant
|f − g| = (f − g)1A+ − (f − g)1A− , donc∫

|f − g| dµ =
∫

(f − g) 1A+ dµ−
∫

(f − g) 1A− dµ

=
∫

A+
(f − g) dµ−

∫
A−

(f − g) dµ = 0 − 0 = 0.

Ce qui implique que f = g µ-presque partout. Cas général : on pose νn(A) =
ν(A ∩ Ωn), où (Ωn) est une suite croissante d’ensembles de mesure finie de
réunion Ω. νn est une mesure finie et admet les densités f1Ωn et g1Ωn qui
coïncident donc µ-presque partout : on a f1Ωn = g1Ωn µ-presque partout, et
à la limite f = g µ-p.p.

Théorème 4.8.2. On suppose que ν est une mesure admettant f comme
densité par rapport à µ. Alors, pour toute fonction mesurable g∫

|g| dν =
∫

|g|f dµ. (4.3)

Si cette quantité est finie, on a alors∫
g dν =

∫
gf dµ. (4.4)

Démonstration. Si g = 1A avec A ∈ F , (4.4) est immédiat. Par linéarité, (4.4)
est également vérifiée lorsque g est une fonction simple positive. En utilisant
le lemme 4.3.3 et le théorème de convergence monotone, il s’ensuit que (4.4)
est vraie pour toute fonction mesurable positive, donc en particulier (4.3) est
vraie pour toute fonction mesurable g. Supposons maintenant que

∫
|g| dν =∫

|g|f dµ < +∞ : on peut alors écrire g = g+ − g− avec
∫
g+ dν < +∞ et∫

g− dν < +∞. Comme g+ et g− sont des fonctions mesurables positives, on
a
∫
g+ dν =

∫
g+f dµ et

∫
g− dν =

∫
g−f dµ. En faisant la différence, on

obtient donc
∫

(g+ − g−) dν =
∫

(g+ − g−)f dµ, soit (4.4).

4.8.2 Décomposition de Lebesgue

Définition. On dit que la mesure µ est une mesure absolument continue par
rapport à λ, ce qui est noté µ ≪ λ, si pour tout borélien A ∈ B(R), on a :
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λ(A) = 0 implique µ(A) = 0. On dit que la mesure ν est une mesure singulière
par rapport à λ, ce que l’on note ν ⊥ λ, s’il existe N ∈ B(R) tel que λ(N) = 0
et ν(N c) = 0.

Remarque. Un tel borélien N n’est pas nécessairement unique.

Théorème 4.8.3. Toute mesure σ−finie µ sur (R,B(R)) se décompose de
façon unique sous la forme µ = ν1 + ν2, où ν1 est absolument continue par
rapport à la mesure de Lebesgue λ et ν2 est singulière par rapport à λ.

Démonstration. Montrons tout d’abord l’existence d’une telle décomposition.
Considérons l’ensemble des négligeables pour la mesure λ :

N = {A ∈ B(R); λ(A) = 0}.

Posons α = sup{µ(A); A ∈ N }. Si α = 0, alors µ = ν1 et il n’y a rien à
démontrer. Supposons donc α > 0. Dans ce cas, il existe une suite croissante
(An) d’éléments de N telle que µ(An) ≥ α − 1

n pour tout n ∈ N∗. Ainsi,
l’ensemble A = ∪n≥1An ∈ N vérifie µ(A) = α. Soit maintenant B ⊂ Ac tel
que λ(B) = 0. On se demande s’il est possible d’avoir µ(B) > 0. On sait que
µ(A∪B) = µ(A) +µ(B) ≥ α et A∪B ∈ N donc µ(A∪B) ≤ α. On voit donc
que nécessairement µ(B) = 0. Posons maintenant ν1 = 1lAcµ et ν2 = 1lAµ. La
mesure ν1 admet la densité 1lAc par rapport à µ. On a

ν1(B) =
∫

B
1lAc dµ =

∫
1lAc1lB dµ =

∫
1lAc∩B dµ = µ(Ac ∩B).

Ainsi, si B est tel que λ(B) = 0, alors ν1(B) = µ(Ac ∩B) = 0 et donc ν1 ≪ λ.
On remarque de plus que λ(Ac) = 0 et ν2(Ac) = µ(A ∩ Ac) = 0. Donc ν2 est
bien singulière par rapport à λ.

Pour montrer l’unicité de la décomposition, supposons que µ = ν ′
1 + ν ′

2,
avec ν ′

1 ≪ λ et ν ′
2 ⊥ λ. Choisissons donc des ensembles A,B ∈ B(R) tels que

ν2(A) = λ(Ac) = ν ′
2(B) = λ(Bc) = 0. On a alors

ν2(A ∩B) = ν ′
2(A ∩B) = ν1(Ac ∪Bc) = ν ′

1(Ac ∪Bc) = 0.

Donc ν1 = 1lA∩B ν1 = 1lA∩B µ = 1lA∩B ν ′
1 = ν ′

1 et ν2 = µ− ν1 = µ− ν ′
1 = ν ′

2.

Remarque. En réalité, on peut dire un peu plus : la mesure ν1 apparaissant
dans la décomposition du théorème admet une densité par rapport à la mesure
de Lebesgue. Ce résultat constitue le théorème de Radon-Nikodým. Ce résul-
tat, que nous ne démontrerons pas ici, peut être établi à l’aide de techniques
hilbertiennes (voir par exemple Rudin [28]).


